segunda-feira, 30 de maio de 2011

Aprendendo com a Física: a biografia de albert eisten

Aprendendo com a Física: a biografia de albert eisten

a biografia de albert eisten

http://www.youtube.com/watch?v=kq138in_kR4

Isaac Newton

Isaac Newton nasceu a 25 de Dezembro de 1642, no mesmo ano em que faleceu o famoso cientista Galileu. Durante a infância, foi educado pela avó e frequentou a escola em Woolsthorpe. Na adolescência, frequentou a Grantham Grammar School. Foi encarregado de ajudar na gestão dos negócios da família, o que não lhe agradava. Por isso, dividia o seu tempo entre os livros e a construção de engenhosos entretenimentos, como por exemplo um moinho de vento em miniatura ou um relógio de água.

O seu tio apercebeu-se do seu talento extraordinário e convenceu a mãe de Newton a matriculá-lo na escola em Cambridge. Enquanto se preparava para ingressar em Cambridge, Newton instalou-se na casa do farmacêutico da vila, onde conheceu a menina Storey por quem se apaixonou e ficou noivo antes de deixar a vila para ingressar no Trinity College. Tinha então dezanove anos. Apesar de ter muito afeto por este primeiro e único amor da sua vida, a absorção crescente pelo trabalho levou-o a deixar a sua vida amorosa para segundo plano.

Vários fatores influenciaram o desenvolvimento intelectual e a direção das pesquisas de Newton, em especial as idéias que encontrou nos seus primeiros anos de estudo, os problemas que descobriu através da leitura e o contacto com outros que trabalhavam no mesmo campo. No início do seu primeiro ano estudou um exemplar dos Elementos de Euclides, a Clavis de Oughtred, a Geometria de Descartes, a Óptica de Kepler e as obras de Viète. Depois de 1663, assistiu a aulas dadas por Barrow e conheceu obras de Galileu, Fermat e Huygens.

Newton foi um autodidata que nos finais de 1664, atingiu um grande conhecimento matemático e estava pronto para realizar as suas próprias contribuições. Durante 1666, após ter obtido o seu grau de Bacharel, o Trinity College foi encerrado devido à peste. Este foi para Newton o período mais produtivo, pois, nesses meses, na sua casa de Lincolnshire, realizou quatro das suas principais descobertas: O teorema binomial; O cálculo diferencial e integral; A lei da gravitação; A natureza das cores.

Newton não se concentrou apenas numa só área de estudos. Para além da a Matemática e da Filosofia Natural, as suas duas grandes paixões foram a Teologia e a Alquimia. Enquanto teólogo, Newton acreditava, sem questionar, no criador todo poderoso do Universo, acreditando sem hesitação no relato da criação. Nesse sentido, desenvolveu esforços para provar que as profecias de Daniel e que o "Apocalipse" faziam sentido, e realizou pesquisas cronológicas com o objetivo de harmonizar historicamente as datas do Antigo Testamento.
Com vinte seis anos, regressou a Cambridge em 1667 e por recomendação do próprio Barrow foi eleito Professor de Matemática. As suas primeiras lições foram sob óptica e nelas expôs as suas próprias descobertas. Já em 1668 tinha construído com as suas próprias mãos um telescópio de espelho muito eficaz e de pequeno tamanho. Utilizou-o para observar os satélites de Júpiter. Em 1672 Newton comunica o seu trabalho sobre telescópios e a sua teoria corpuscular da luz, o que vai dar origem à primeira de muitas controvérsias que acompanharam os seus trabalhos.

Os esforços de Newton no campo da matemática e das ciências foram grandiosos, mas a sua maior obra foi sobre a exposição do sistema do mundo, dada na sua obra denominada Principia. Durante a escrita do Principia Newton não teve qualquer cuidado com a saúde, esquecendo-se das refeições diárias e até de dormir.

Os dois primeiros volumes contêm toda a sua teoria, incluindo a da gravitação e as leis gerais que estabeleceu para descrever os movimentos e os pôr em relação com as forças que os determinam, leis denominadas por "leis de Newton". No terceiro volume, Newton trata as aplicações da sua teoria dos movimentos de todos os corpos celestes, incluindo também os cometas.

Newton, que guardava para si as suas extraordinárias descobertas, foi convencido por Halley a dá-las a conhecer. A publicação do livro III do Principia deu-se apenas pelo fato de Newton ter sido alertado por Halley.Os contemporâneos de Newton reconheceram a magnitude das escrituras, ainda que, apenas alguns conseguissem acompanhar os raciocínios nele expostos. Rapidamente, o sistema newtoniano foi ensinado em Cambridge (1699) e Oxford (1704).

Em Janeiro de 1689, é eleito para representar a universidade na convenção parlamentar onde se mantém até à sua dissolução em Fevereiro de 1690. Durante esses dois anos viveu em Londres onde fez novas amizades com pessoas influentes incluindo John Locke (1632-1704).

No Outono de 1692, Newton adoece seriamente, conduzindo-o para perto do colapso total. Newton recupera a saúde em finais de 1693 para regozijo dos seus amigos.

É de lamentar que após 1693, Newton não se tenha dedicado mais à matemática. Ele teria facilmente criado uma das mais importantes aplicações do cálculo: o cálculo das variações. Já nos Principia Newton tinha sugerido este assunto quando calcula a forma de uma superfície de revolução que atravessa uma massa de liquido oferecendo resistência mínima. Também em 1696, resolveu em poucas horas o clássico problema da brachistochrona: determinar a forma da trajetória que uma massa em queda, sob a ação da gravidade, descreve entre dois pontos dados num tempo mínimo.

Poucas semanas antes da sua morte, Newton presidiu a uma secção da Real Society. Foi eleito sócio estrangeiro da Academia das Ciências Francesa em 1699. Faleceu a 20 de Março de 1727, durante o sono, já com oitenta e cinco anos. Teve direito ao elogio fúnebre oficial pronunciado pelo secretário da Academia e sepultado no Panteão de Londres, junto aos reis de Inglaterra, na Abadia de Westminster.

sexta-feira, 27 de maio de 2011

Albert Einsten

Físico alemão de origem judaica, foi um dos maiores cientistas de todos os tempos. É conhecido especialmente por sua teoria da relatividade, que expôs pela primeira vez em 1905, quando tinha apenas 26 anos de idade. Suas contribuições à ciência foram muitas.

Relatividade: A teoria da relatividade de Einstein revolucionou o pensamento científico, com suas concepções novas sobre o tempo, o espaço, a massa, o movimento e a gravitação. Concebia a matéria e a energia como equivalentes e não distintas. Ao afirmar isso, assentou a base para o controle da liberação da energia contida no átomo.

Assim, Einstein foi um dos criadores da idade atômica. Sua famosa equação E = mc², onde c é a velocidade da luz, tornou-se a pedra fundamental do desenvolvimento da energia atômica. Ao elaborar sua teoria, baseou-se num pensamento filosófico profundo e num raciocínio matemático complexo.

Albert, filho de Hermann Einstein e Paulina Koch Einstein, nasceu em 14 de março de 1879, na cidade de Ulm, Württemberg, Alemanha. Quando tinha cinco anos de idade, seu pai mostrou-lhe uma bússola de bolso. O menino ficou profundamente impressionado com o comportamento misterioso da agulha magnética que se mantinha voltada para a mesma direção por mais que se fizesse girar a bússola. Mais tarde, segundo contam, explicou que sentira que "por trás das coisas, algo forçosamente deveria estar escondido".

Depois de concluir seu curso nas escolas públicas de Munique (Alemanha) e Aarau (Suíça), Einstein estudou matemática e física no Instituto Politécnico Suíço na cidade de Zurique. Em 1900, terminou o seu curso, indo trabalhar como perito no Departamento de Patentes de Berna, cargo em que permaneceu de 1902 até 1909. O trabalho nessa repartição lhe deixava muito tempo livre, tempo que empregava em experimentação científica. Em 1905, adquiriu a cidadania suíça.

Durante este ano, Einstein apresentou três de suas maiores contribuições ao conhecimento científico. O ano de 1905 marcou época na história da ciência física, pois foi então que ele escreveu três trabalhos, publicados num periódico científico alemão, intitulado Annalen der Physik (Anais de Física), cada um dos quais veio a converter-se na base de um novo ramo da física.
Em um desses trabalhos, Einstein sugeriu que a luz poderia ser concebida como uma corrente formada de partículas ínfimas, às quais deu o nome de quanta. Essa idéia passou a constituir uma parte importante da teoria quântica. Antes de Einstein, cientistas já tinham descoberto que um feixe luminoso brilhante, incidindo sobre um metal, levava-o a emitir elétrons, que poderiam transformar-se numa corrente elétrica. Mas os cientistas não podiam explicar o fenômeno, a que tinham dado o nome de efeito fotelétrico. Einstein, entretanto, explicou esse efeito, baseando-se na sua teoria quântica. Mostrou que, quando os quanta de energia luminosa atingem átomos de um metal, forçam-no a desprender elétrons.

A obra de Einstein ajudou a comprovar a teoria quântica. Ao mesmo tempo, deu ao efeito fotoelétrico uma explicação impossível de conceber, enquanto os cientistas continuassem a afirmar que a luz se propagava exclusivamente através de ondas. A célula fotoelétrica ou olho eletrônico que é uma decorrência do trabalho de Einstein tornou possíveis o cinema sonoro, a televisão e muitos outros inventos. Por seu trabalho sobre os quanta, Einstein recebeu o prêmio Nobel de física de 1921.

Num segundo trabalho, intitulado A Eletrodinâmica dos Corpos em Movimento, Einstein apresentou a teoria da relatividade restrita. Em virtude dessa teoria, que mostra a relatividade do tempo - idéia jamais concebida antes - o nome de Einstein passou a ser amplamente conhecido. Em 1944, uma cópia do famoso manuscrito de Einstein sobre a eletrodinâmica serviu de base para um investimento de seis milhões e 500 mil dólares em bônus de guerra, num leilão realizado na cidade de Kansas, E.U.A. O trabalho foi mais tarde enviado para a Biblioteca do Congresso em Washington. Em outro estudo, publicado em 1905, Einstein demonstrou a equivalência entre massa e energia, expressa em sua famosa equação E = mc².

O terceiro importante trabalho de Einstein, em 1905, dizia respeito ao movimento browniano, um movimento em ziguezague de partículas microscópicas suspensas num líquido ou gás. Esse movimento confirmava a teoria atômica da matéria.
Einstein apresentou esses trabalhos antes de assumir posto acadêmico. Mas, em 1909, foi nomeado professor de física teórica da Universidade de Zurique, na Suíça. Em 1911 e 1912, ocupou posto equivalente na Universidade Alemã de Praga, no antigo Império Austro-Húngaro. Função semelhante passou a desempenhar, em 1912, no Instituto Federal de Tecnologia de Zurique, Suíça.
Em 1913, Einstein era eleito membro da Academia Prussiana de Ciências, sediada em Berlim. Um ano depois, ao aceitar o posto de professor de física na Universidade de Berlim, readquiriu a cidadania alemã. No mesmo ano, foi nomeado diretor do Instituto de Física Kaiser Guilherme, também na capital alemã, postos que ocupou até 1933.

Em 1915, Einstein anunciava ter desenvolvido a teoria da relatividade generalizada, baseada na sua teoria sobre a relatividade restrita. Em sua teoria generalizada, tentou expressar todas as leis da física através de equações covariantes, ou seja, equações que têm a mesma forma matemática, qualquer que seja o sistema de referência a que são aplicadas. A teoria geral, anunciada em 1915, veio a público em 1916.

A Teoria Unitária do Campo. Einstein não se sentiu inteiramente satisfeito com a teoria da relatividade generalizada, pois ela não incluía o eletromagnetismo. Ao aproximar-se o fim da década de 1920, tentou incorporar numa só teoria tanto os fenômenos eletromagnéticos como os gravitacionais, teoria denominada teoria unitária do campo. Mas não conseguiu dar forma a uma teoria unitária do campo, embora tenha despendido 25 anos de sua vida tentando elaborá-la. Sentindo aproximar-se o fim de sua vida, Einstein assinalou a conveniência de deixar claro que tal teoria não existia. Preocupava-o a idéia de que, não tendo desenvolvido uma teoria nem mostrado a impossibilidade de sua existência, talvez ninguém jamais o fizesse.

Einstein casou-se duas vezes. Separou-se da primeira mulher logo após sua chegada a Berlim. Durante a Primeira Guerra Mundial, desposou sua prima-irmã, Elsa, que veio a morrer em Princeton em 1936, depois de compartilhar com ele, fielmente, sua vida. De seu primeiro casamento, teve dois filhos; com o segundo, ganhou duas enteadas.

Einstein era, por natureza, profundamente religioso. Entretanto, jamais se ligou a qualquer religião ortodoxa. Embora achando a crença num deus pessoal um conceito demasiadamente específico para ser aplicável ao Ser em ação neste mundo, Einstein jamais admitiu um universo caracterizado pelo acaso e pelo caos. No universo, pensava ele, deveriam reinar a lei e a ordem absolutas. Certa vez afirmou: "Deus pode ser muito sofisticado, mas não é malicioso."

Einstein foi eleito pela revista Time a maior personalidade do século XX.

Arquimedes

Por ter vivido por volta do século III a.C, não são muitos os registros sobre a vida de Arquimedes. O que se sabe é que ele nasceu no ano de 287 a.C em Sirucasa, uma cidade-estado da Grécia Oriental na época e que hoje é a região da Sicília, e que seu pai foi um astrônomo chamado Fídias.
Ao que indicam os poucos registros sobre sua vida, Arquimedes teria estudado na Alexandria quando jovem, onde teria conhecido Euclides e se empenhado em buscar verdades físicas, principalmente no campo da Mecânica, onde desenvolveu grandiosas obras da engenharia bélica da época.
Entre algumas das obras bélicas atribuídas a Arquimedes está a idealização dos “espelhos ustórios”, que teriam sido usados pelos defensores de Sirucasa para queimar navios romanos através da concentração de raios solares à determinado ponto.
É narrado o fato de como o sábio teria resolvido o problema do número π, calculando seu valor através da primeira soma infinita de que se tem conhecimento.
Também atribuída à ele a famosa frase: “ Dêem-me um ponto de apoio e eu levantarei a Terra”, que se referia ao princípio de alavanca que havia estabelecido.
Como grande geômetra, tinha a maior coleção de figuras planas com centro de massa perfeitamente determinados de que se tem conhecimento na época.
O episódio mais lendário de sua vida é a do dia em que saiu pelas ruas de Sirucasa nu, após resolver o problema de como pesar as medidas de ouro e de prata em uma coroa, gritando: Eureka! Eureka! Que significa: Encontrei! Encontrei!
Muito temido e admirado pelos romanos por suas grandiosas armas acabou sendo morto em uma invasão à sua cidade, em 212 a.C, quando, escrevendo sobre a areia, se recusou a obedecer a um soldado que mandara que desse a passagem, dizendo que não iria interromper seu raciocínio.
Atendendo a um pedido seu, foi gravado em seu túmulo um cilindro circunscrito a uma esfera, uma das suas deduções matemáticas preferidas, utilizada para se calcular a área de uma superfície esférica.

Galileu Galilei

Nasceu em 15 de fevereiro de 1564. Na cidade de Pisa, Itália

Galileu foi um físico, matemático, astrônomo e filósofo italiano que teve um papel ímpar na revolução científica. Sua obra mais citada e uma das mais revolucionárias para a época na qual viveu é a proposição da teoria Heliocêntrica, que descreve um modelo de universo onde o Sol é o centro imóvel, e não a Terra como se acreditava na época.

Também foi responsável pelo desenvolvimento dos primeiros estudos consistentes do movimento uniformemente acelerado e do movimento do pêndulo. Enunciou a lei dos corpos e o princípio da inércia e o conceito de referencial inercial, idéias precursoras da mecânica newtoniana.

Galileu construiu um telescópio refrator significativamente melhorado em relação aos já existentes na época, tornando possível a observação das manchas solares (o que lhe custou a visão), das crateras na Lua, das fases de Vênus, das luas de Júpiter, dos anéis de Saturno e inúmeras estrelas da Via Láctea.

Famoso por desenvolver os próprios equipamentos de pesquisa, é atribuído a Galileu a criação de instrumentos como a balança hidrostática, um tipo de compasso geométrico que permitia medir ângulos e áreas, o termômetro de Galileu e o precursor do relógio de pêndulo.

Em 1614 estuda métodos para determinar o peso do ar, descobrindo que pesa pouco, mas não zero como se pensava até então.

Em 1616, a Inquisição (Tribunal do Santo Ofício) pronunciou-se sobre a Teoria Heliocêntrica declarando que a afirmação de que o Sol é o centro imóvel do Universo era herética e que a de que a Terra se move estava "teologicamente" errada. Ele foi convocado a Roma para expor os seus novos argumentos. Teve assim a oportunidade de defender as suas idéias perante o Tribunal do Santo Ofício, que decidiu não haver provas suficientes para concluir que a Terra se movia e que por isso estimulou Galileu a abandonar a defesa da teoria heliocêntrica. Tendo Galileu persistido em ir além com suas idéias foi então proibido de divulgá-las ou ensiná-las.

A condenação de Galileu foi uma tentativa de salvar o geocentrismo, chave da escolástica, a grande síntese entre a filosofia de Aristóteles (século IV a.C.) e a doutrina cristã que dominou o pensamento europeu durante a Baixa Idade Média (séculos XI a XIV). Seu processo permaneceu arquivado por longos 350 anos. Somente em 1983 o papa João Paulo II admitiu os erros da Igreja e o absolveu.

Morreu em 8 de janeiro de 1642. Na cidade de Florença, Itália.

Alguns Fisicos importantes para a sociedade-

Benjamin Franklin

(1706 – 1790)

Benjamin Franklin foi a mais nova de 17 crianças nascidas dos dois casamentos de Josiah Franklin, comerciante de velas de cera. Jornalista e tipógrafo desde os 15 anos, começou no jornal de seu irmão James, "The New England Courant", em Boston.
Em 1729, comprou o "Pennsylvania Gazette". Seu grande sucesso como editor foi o Almanaque do Pobre Ricardo. Publicado a partir de 1732, o anuário de informações gerais era cheio dos provérbios de Franklin, como: "um tostão poupado é um tostão ganhado". Neste período, além de editor, liderou o grupo que criou a primeira biblioteca pública da Filadélfia. Foi também um dos fundadores da Universidade da Pensilvânia, onde ergueu o primeiro hospital público da colônia que seria os Estados Unidos.
Em 1748, vendeu a editora para se tornar cientista em tempo integral. Suas descobertas sobre a eletricidade lhe trouxeram uma reputação internacional. Além de ser eleito membro da Royal Society, ganhou a medalha Copley em 1753 e seu nome passou a designar uma medida de carga elétrica. Franklin identificou as cargas positivas e negativas e demonstrou que os trovões são um fenômeno de natureza elétrica. Esse conhecimento serviu de base para seu principal invento, o pára-raios. Ele criou também o franklin stove (um aquecedor a lenha muito popular) e as lentes bifocais.
Franklin revolucionou a meteorologia. Com base em conversas com agricultores notou que a mesma tormenta percorria várias regiões. Assim, criou mapas meteorológicos semelhantes aos usados ainda hoje para substituir os gráficos usados até então.
O inventor provou ser ainda um hábil administrador público, porém, usava a influência em favor de familiares. O seu mais notável feito no governo foi a reforma do sistema postal. Foi embaixador das colônias no Reino Unido e, depois da independência, representante dos Estados Unidos na França, onde se tornou uma figura popular na sociedade parisiense.
Em 1785, Franklin foi chamado de volta aos Estados Unidos e honrado com um retrato pintado por Joseph Siffred Duplessis para a Galeria do Retrato Nacional, do Instituto Smithsoniano, em Washington, como um dos heróis da independência. Ele participara da redação da "Declaração de Independência" e da Constituição. Engajou-se na campanha abolicionista e continuou com a popularidade em alta. Quando morreu, aos 84 anos, o funeral foi acompanhado por 20 mil pessoas.

segunda-feira, 16 de maio de 2011

é uma galáxia espiral onde se encontra o Sistema Solar. É uma estrutura constituída por cerca de duzentos bilhões[1] de estrelas (algumas estimativas colocam esse número no dobro, em torno de quatrocentos bilhões[2]) e tem uma massa de cerca de um trilhão e 750 bilhões de massas solares. Sua idade está calculada entre 13 e 13,8 bilhões de anos, embora alguns autores afirmem estar na faixa de quatorze bilhões de anos.
EstruturaSão seis partes que constituem a Via Láctea: núcleo, bulbo central, disco, os braços espirais, o componente esférico e o halo.
Núcleo:

O núcleo está localizado no centro do sistema, tem a forma de uma esfera achatada e é igualmente constituído por estrelas, mas de idade mais avançada (chamada de população 2), apresentando por isso uma cor mais avermelhada do que o disco. Tem um diâmetro calculado em cerca de cem mil anos-luz e uma altura de trinta mil anos-luz, sendo uma fonte de intensa radiação eletromagnética, provavelmente devido à existência de um buraco-negro no seu centro. Este é envolto por um disco de gás a alta temperatura e por partículas de poeira interestelar que o ocultam, absorvendo a luz visível e a radiação ultravioleta. Porém, na faixa de radiofrequência é detectável com certa facilidade.Via Láctea COBE's View of the Milky Way - GPN-2002-000111.jpg

Milky Way IR Spitzer.jpg
Dados observacionais (J2000)
Idade =~13 000 000 000 anos
Tipo SBb espiral barrada
N° de estrelas 200.000.000.000¹,400.000.000.000²
Ascensão reta -
Aglomerado Grupo Local
Declinação -
Distância (parsec)
Constelação Sagitário
Características físicas
Dimensões 78500 al, 24000 pc
Buraco negro central Sagittarius A
Raio 50.000 al, 15,33 kpc
Magnitude absoluta -20,9
Massa 1012 massas solares
Outras denominações
Outros nomes Galáxia da Terra, Galáxia local, Galáxia Via Láctea

terça-feira, 10 de maio de 2011

Buraco Negro

De acordo com a Teoria Geral da Relatividade, um buraco negro é uma região do espaço da qual nada, nem mesmo a luz, pode escapar. Este é o resultado da deformação do espaço-tempo causada por uma fonte altamente massiva e compacta. Um buraco negro é limitado pela superfície denominada horizonte de eventos, que marca a região a partir da qual não se pode mais voltar.[1] O adjetivo negro em buraco negro se deve ao fato deste não refletir a nenhuma parte da luz que atinja seu horizonte de eventos, atuando assim, como se fosse um corpo negro perfeito em termodinâmica.[2] Acredita-se também, com base na mecânica quântica, que buracos negros emitam radiação térmica, da mesma forma que os corpos negros da termodinâmica a temperaturas finitas. Esta temperatura, entretanto, é inversamente proporcional a massa do buraco negro, de modo que observar-se a radiação térmica proveniente destes objetos torna-se difícil quando estes possuem massas compáráveis às das estrelas.

Apesar de os buracos negros serem praticamente invisíveis, estes podem ser detectados por meio de sua interação com a matéria em sua vizinhança.[3] Um buraco negro pode, por exemplo, ser localizado por meio da observação do movimento de estrelas em uma dada região do espaço. Outra possibilidade da localização de buracos negros diz respeito a detecção da grande quantidade de radiação emitida quando matéria proveniente de uma estrela companheira espirala para dentro do buraco negro, aquecendo-se a altas temperaturas.[4]

Embora o conceito de buraco negro tenha surgido em bases teóricas, astrônomos têm identificado inúmeros candidatos a buracos negros estelares e também indícios da existência de buracos negros super massivos no centro de galáxias massivas.[5] Há indícios de que no centro da própria Via Lactea, nas vizinhanças de Sagitário A*, deva haver um buraco negro com mais de 2 milhões de massas solares.[6]

Sistema Solar

Representação esquemática do Sistema Solar, mostrando os Sol e os planetas.

O Sistema Solar é constituído pelo Sol e por um conjunto de objetos astronômicos que se ligam ao Sol através da gravidade. Acredita-se que esses corpos tenham sido formados por meio de um colapso de uma nuvem molecular gigante há 4,6 bilhões de anos atrás. Entre os muitos corpos que orbitam ao redor do Sol, a maior parte da massa está contida dentro de oito planetas relativamente solitários,[e] cujas órbitas são quase circulares e se encontram dentro de um disco quase plano, denominado de "plano da eclíptica". Os quatro menores planetas (Mercúrio, Vênus, Terra e Marte) são conhecidos como planetas telúricos ou sólidos, encontram-se mais próximos do Sol e são compostos principalmente de metais e rochas. Os quatro maiores planetas (Júpiter, Saturno, Urano e Netuno) encontram-se mais distantes do Sol e concentram mais massa do que os planetas telúricos, sendo também chamados de planetas gasosos. Os dois maiores, Júpiter e Saturno, são compostos em sua maior parte de hidrogênio e hélio. Urano e Netuno, conhecidos também como "planetas ultraperiféricos", são cobertos de gelo, sendo às vezes referidos como "gigantes de gelo", apresentando também em suas composições água, amônia, metano, etc.

O Sistema Solar também o lar de outras duas regiões povoadas por objetos menores. O cinturão de asteroides está situado entre Marte e Júpiter e sua composição se assemelha à dos planetas sólidos. Além da órbita de Netuno, encontram-se os "objetos transnetunianos", com uma composição semelhante a dos planetas gasosos. Dentro destas duas regiões, existem outros cinco corpos individuais. São eles: Ceres, Plutão, Haumea, Makemake e Éris, denominados de planetas anões.[e] Além de milhares de corpos pequenos nestas duas regiões, vários outras populações de pequenos corpos que viajam livremente entre as regiões, como cometas, centauros.

O vento solar, fluxo de plasma do Sol, é responsável por criar uma bolha no meio interestelar conhecida como heliosfera, que se estende até a borda do disco disperso. A hipotética nuvem de Oort, que atua como fonte de cometas durante um longo período, pode estar a uma distância de aproximadamente dez mil vezes maior do que a heliosfera.

Seis dos planetas e três planetas anões são orbitados por satélites naturais,[b] normalmente conhecidos como "luas", depois da Lua da Terra. Os planetas gasosos são cercados por anéis planetários compostos de poeira e outras partículas

Big Bang

O Big Bang é a teoria cosmológica dominante do desenvolvimento inicial do universo (ver também: Big Bang Frio). Os cosmólogos usam o termo "Big Bang" para se referir à ideia de que o universo estava originalmente muito quente e denso em algum tempo finito no passado e, desde então tem se resfriado pela expansão ao estado diluído atual e continua em expansão atualmente. A teoria é sustentada por explicações mais completas e precisas a partir de evidências científicas disponíveis e da observação.[1][2] De acordo com as melhores medições disponíveis em 2010, as condições iniciais ocorreram por volta de 13,3 a 13,9 bilhões de anos atrás.[3][4]

Georges Lemaître propôs o que ficou conhecido como a teoria Big Bang da origem do Universo, embora ele tenha chamado como "hipótese do átomo primordial". O quadro para o modelo se baseia na teoria da relatividade de Albert Einstein e hipóteses simplificadoras (como homogeneidade e isotropia do espaço). As equações principais foram formuladas por Alexander Friedmann. Depois Edwin Hubble descobriu em 1929 que as distâncias de galáxias distantes eram geralmente proporcionais aos seus desvios para o vermelho, como sugerido por Lemaître em 1927. Esta observação foi feita para indicar que todas as galáxias muito distantes e aglomerado de galáxias têm uma velocidade aparente diretamente para fora do nosso ponto de vista: quanto mais distante, maior a velocidade aparente.[5] Se a distância entre os aglomerados de galáxias está aumentando hoje, todos deveriam estar mais próximos no passado. Esta idéia tem sido considerada em detalhe volta no tempo para as densidades e temperaturas extremas,[6][7][8] e grandes aceleradores de partículas têm sido construídos para experimentar e testar tais condições, resultando em significativa confirmação da teoria, mas estes aceleradores têm capacidades limitadas para investigar em tais regimes de alta energia. Sem nenhuma evidência associada com a maior brevidade instantânea da expansão, a teoria do Big Bang não pode e não fornece qualquer explicação para essa condição inicial, mas sim, que ela descreve e explica a evolução geral do Universo desde aquele instante. As abundâncias observadas de elementos leves em todo o cosmos se aproximam das previsões calculadas para a formação destes elementos de processos nucleares na expansão rápida e arrefecimento dos minutos iniciais do Universo, como lógica e quantitativamente detalhado de acordo com a nucleossíntese do Big Bang.++++

Fred Hoyle é creditado como o criador do termo Big Bang durante uma transmissão de rádio de 1949. Popularmente é relatado que Hoyle, que favoreceu um modelo cosmológico alternativo chamado "teoria do estado estacionário", tinha por objetivo criar um termo pejorativo, mas Hoyle explicitamente negou isso e disse que era apenas um termo impressionante para destacar a diferença entre os dois modelos.[9][10][11] Hoyle mais tarde ajudou consideravelmente no esforço de compreender a nucleossíntese estelar, a via nuclear para a construção de alguns elementos mais pesados até os mais leves. Após a descoberta da radiação cósmica de fundo em 1964, e especialmente quando seu espectro (ou seja, a quantidade de radiação medida em cada comprimento de onda) traçou uma curva de corpo negro, muitos cientistas ficaram razoavelmente convencidos pelas evidências de que alguns dos cenários propostos pela teoria do Big Bang devem ter ocorrido.

De acordo com o modelo do Big Bang, o Universo se expandiu a partir de um estado extremamente denso e quente e continua a se expandir atualmente. Uma analogia comum explica que o espaço está se expandindo, levando galáxias com ele, como passas em um naco de pão a aumentar. O esquema gráfico superior é um conceito artístico que ilustra a expansão de uma parte de um Universo plano.

COMO SERIA O FIM DO MUNDO_APOCALIPSE

segunda-feira, 9 de maio de 2011

Radioastronomia

A radioastronomia estuda a radiação com comprimento de onda maior que aproximadamente 1 milímetro.[1] A radioastronomia é diferente da maioria das outras formas de astronomia observacional pelo fato de as ondas de rádio observáveis poderem ser tratadas como ondas ao invés de fótons discretos. Com isso, é relativamente mais fácil de medir a amplitude e a fase (onda)|fase das ondas de rádio.[1]

Apesar de algumas ondas de rádio serem produzidas por objetos astronômicos na forma de radiação térmica, a maior parte das emissões de rádio que são observadas da Terra são vistas na forma de radiação síncrotron, que é produzida quando elétrons ou outras partículas eletricamente carregadas descrevem uma trajetória curva em um campo magnético.[1] Adicionalmente, diversas linhas espectrais produzidas por gás interestelar, notadamente a linha espectral do hidrogênio de 21 cm, são observáveis no comprimento de onda de rádio.[1][2]

Uma grande variedade de objetos são observáveis no comprimento de onda de rádio, incluindo supernovas, gás interestelar, pulsares e núcleos de galáxias ativas.

Viagem Pelo Universo

O Sistema Solar

segunda-feira, 2 de maio de 2011

Atronomia

Astronomia
História da astronomia, sistema solar, Teoria do Big Bang, planetas do sistema solar, astrônomos, Via Láctea e corpos celestes, quasares e pulsares, buraco negro, supernovas e telescópio Hubble.

Imagem da Via Láctea

Introdução
O ser humano sempre buscou compreender o funcionamento do Universo. Desde a Antiguidade, os povos observavam as estrelas, cometas e planetas para tentar desvendar os mistérios do espaço. Em diversas civilizações, por exemplo, muitas estrelas e planetas foram transformados em deuses. Muitas lendas contam a origem destes astros e delegam poderes especiais a eles. Mas foi somente durante o Renascimento Científico ( séculos XV e XVI ) que o homem passou a ter uma visão mais detalhada e significativa do Universo.

Abaixo um breve histórico da evolução dos conhecimentos sobre astronomia.
750 a.C. - Os egípcios começam a utilizar o movimento do sol para contar o tempo. Surgem os primeiros relógios de Sol.
600 a.C. - O pesquisador grego Tales de Mileto calcula e consegue prever a chegada de um eclipse.
350 a.C. - O matemático grego Eudoxo de Cnidos elabora o primeiro mapa astronômico.
240 a.C. - O grego Eratóstenes faz o primeiro cálculo da circunferência do planeta Terra e chega a conclusão que está distância é de 39.690 km.
140 - Claudius Ptolomeu, pesquisador grego, elabora o primeiro modelo do universo: a Terra ficaria no centro e os planetas e estrelas girariam em torno dela.
1054 - Na China, observadores de estrelas relatam, pela primeira vez, a morte de uma estrela na constelação de Touro.
1304 - O pintor renascentista italiano Giotto faz uma pintura retratando um cometa.
1472 - O astrônomo alemão Johann Müller elabora, com detalhes, estudos sobre a órbita de um cometa.
1543 - Nicolau Copérnico, astrônomo polonês, desenvolve estudos provando a teoria do heliocentrismo. De acordo com ela, todos os planetas do sistema solar giram ao redor do Sol. Esta tese é apresentada no livro Sobre a Revolução dos Corpos Celestes. Embora não aceita pela Igreja Católica, a teoria passar ser um referencial nas pesquisas astronômicas, pois derruba a visão de Ptolomeu sobre o Universo.
1610 - O italiano Galileu Galilei desenvolve um instrumento parecido com um telescópio para observar os astros.
1845 - O irlandês William Parsons elabora o maior telescópio de sua época e descobre as primeiras galáxias espirais.
1851 - O físico francês Jean-Bernard-Leon Foucault comprova o movimento de rotação do planeta Terra.
1862 - O físico sueco Anders Jonas Angströn descobre que o Sol contém hidrogênio em sua composição.
1929 - O astrônomo norte-americano Edwin Powell Hubble descobre que as galáxias afastam-se uma das outras. É a semente para a Teoria do Big Bang, a explosão inicial que deu origem ao Universo.
1963 - O norte-americano Maarten Schmidt faz descobertas sobre os quasares, os astros mais distantes e mais poderosos que existem no universo.
1964 - Os astrônomos Arno Allan Penzias e Robert Woodrow Wilson detectam a luz originária da explosão do Big Bang há 13 bilhões de anos.
1967 - O astrônomo inglês Anthony Hewish consegue captar sinais de rádio do primeiro pulsar, uma espécie de estrela que emite radiação no formato de pulsos regulares.
1971 - O pequisador canadense C.T. Bolt detecta a existência dos buracos negros que concentram a maior quantidade de matéria do Universo.
1975 - O físico inglês Stephen Hawking conclui que um buraco negro pode evaporar, perdendo nesse processo uma pequena quantidade de massa.
1987 - O astrônomo canadense Ian Shelton consegue a primeira supernova próxima da Terra. As supernovas são explosões de grandes estrelas próximas a morte.
1992 - O telescópio orbital Cobe consegue fotografar, com grande precisão, o brilho do Big Bang.
1999 - Os astrônomos, após observações e imagens do telescópio Hubble, comprovam que o Universo está se expandindo há 13 bilhões de anos, ou seja, desde o momento do Big Bang.
Você sabia?
Dia 2 de dezembro comemora-se o Dia da Astronomia.

_____________________________
Veja também:
Teoria do Big Bang
Sistema Solar
Buraco Negro
Galáxias
Ano-Luz
Lua